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Abstract

A higher order temperature field that satisfies the thermal surface boundary conditions, necessary for accurate
modeling of temperature distribution through the thickness of laminated structures, is developed. The theory is
implemented in the coupled thermo-piezoelectric-mechanical analysis of composite laminates with surface bonded
piezoelectric actuators. A higher order displacement theory is used to define the mechanical displacement field.
Therefore, transverse shear effects are modeled accurately and the developed procedure is applicable to both thin
and moderately thick laminates. The mathematical model is implemented using finite element technique. Numerical
results are presented for a composite laminated plate, with one edge fixed, subjected to thermal loading.
Correlations with ANSYS, for both the temperature field and the displacement field, are presented to validate the
higher order temperature theory. Composite laminates of various stacking sequences are studied to investigate the
effects on temperature field and displacement field. The results obtained using the coupled theory are compared with
those obtained using the standard uncoupled theory. It is shown that thermal coupling affects plate deflection and
control authority due to actuation. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The development of smart composites offers great potential for use in advanced aerospace structures
because they are light in weight and possess adaptive control capabilities. Detailed overviews of the
current status of smart composite structures were reported by Crawley (1994) and Chopra (1996). For
the analysis of these structures, it is essential to accurately model both the strain field and the electric
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Nomenclature

B,, By, By operator matrices

bij dielectric permittivity, i, j =1, 2, 3

CE heat capacity

Cijil elastic constants, i, j, k, [ =1, 2, 3

D; electric displacement components, i = 1, 2, 3

d; thermal-piezoelectric coupling constants, i = 1, 2, 3
E; electric field components, i =1, 2,3

ejjk piezoelectric constants, i, j, k =1, 2, 3

F total free energy

H plate thickness including piezoelectric layers

h plate thickness without piezoelectric layers

kij thermal-mechanical coupling constants, i,j =1, 2, 3

L'l, L,, L3 operator matrices
N, N, N3 interpolation matrices

qe charge density

qs heat flux density

S entropy

To initial temperature

t; traction, i =1, 2, 3

U; displacement components, i = 1, 2, 3

up, vo, wo  displacements of a point on the mid plane
V volume

X, Y, Z coordinates

or material constant (o7 = cg/Tp)

&jj strain tensor components, i, j = 1,2, 3

0 temperature rise from initial temperature (7})
Kjj thermal conductivity, i,j =1, 2, 3

o) stress tensor components, i,j = 1,2, 3

10) electric potential

0O transpose

field. However, most studies in smart structures considered only one-way interaction between the
mechanical field and the piezoelectric field. For example, in the analysis of a structure with actuators, it
is assumed that the piezoelectric field can be calculated directly from applied voltage, which is then
introduced in the unknown displacement field as an induced strain. Actually, not only does piezoelectric
actuation change the strain field during active control of the structure, the new strain field, in return,
affects the piezoelectric distributions. This is known as bi-way interaction in smart composites (Mitchell
and Reddy, 1995).

In addition, aerospace smart structures are often subjected to extensive thermal loads. Therefore, it is
necessary to accurately model the temperature distribution and the associated coupling effects. A better
understanding of bi-way coupling effects between temperature, piezoelectric and mechanical fields is
essential for the proper implementation of smart composites and active control techniques in the
presence of thermal loads. Unfortunately, limited research has been reported in this area. In Tauchert
(1992), one-way thermal-mechanical and one-way thermal-piezoelectric coupling effects based on the
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classical laminated theory were addressed. A layerwise theory was used to model smart composite plates
under thermal loads using a known thermal field (Lee and Saravanos, 1996, Lee and Saravanos, 1997).
Again, the bi-way coupling effects between thermal-piezoelectric and thermal-mechanical responses were
ignored. Recently, a coupled thermo-piezoelectric-mechanical model was developed by Chattopadhyay et
al. to address the bi-way coupling issues associated with smart composites under thermal loads
(Chattopadhyay et al, 1998). However, a linear temperature field, which is generally used in plate
problems to define the temperature variation through the plate thickness, was used. The advantage of
the linear temperature field is that it is easy to implement. However, the drawback is that it cannot
accurately satisfy thermal boundary conditions on the plate surfaces. Even for the numerical example
considered by Chattopadhyay et al. (1998), the heat flux boundary conditions at the plate top surface
and the insulated boundary conditions at the plate bottom surface were not satisfied. Therefore, the use
of a linear temperature field does not provide an accurate representation of the temperature distribution
through the laminate thickness. Consequently, the plate out-of-plane bending moment, due to thermal
loads, is not modeled accurately. To address this issue, a new higher order temperature (HOT) field is
developed in this paper for accurately modeling the temperature field through the plate thickness. The
developed temperature field satisfies the general thermal boundary conditions at both the top and
bottom surfaces of the laminates. It must be noted that although this theory is developed to study smart
structures, it can be widely used in the analysis of arbitrary plate structures. Also by Chattopadhyay et
al. (1998), the Rayleigh approach was used in the numerical implementation of the coupled theory. This
limits the application of the theory to practical structures and boundary conditions. In this paper, a
finite element procedure is developed to implement the coupled thermo-piezoelectric-mechanical theory.
Therefore, the procedure is capable of addressing different laminate geometry and boundary conditions.

2. Mathematical formulation

The governing equations are derived by applying the principle of free energy and the variational
principle. For the plate shown in Fig. 1, the total free energy of the structure can be written as

F(Sij, El', 0) = %C,jk/&y’&/d — eijkEigjk - %bl‘/‘EjE]' — ki/BSU — djEl'Q — %CZTGZ (1)
where ¢; are the components of the strain tensor, E; are the components of the electric field vector, and
0 is the temperature rise from the initial temperature Ty. The quantities c;u; and e represent the elastic
and the piezoelectric constants, respectively and bj; is the dielectric permittivity. The quantities k; and d;
refer to the thermal-mechanical, and the thermal-piezoelectric coupling constants, respectively and ar is
defined as cg/ Ty, where cg is heat capacity. Consequently, the constitutive relations are

oF
0ij = 5o = Ciiklek ~ e Ex — kil ©)
ij
oF
D; = TRE Gk + biE; + di0 3)
oF
S = —30 = ke + diE; + ar0 @)

where ¢; and D; are the components of the stress tensor and the electric displacement vector,
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respectively and S is the entropy. Based on linear piezoelectricity, E; is derivable from a scalar potential
function ¢ as follows:

Ei = _d),i (l = l’ 29 3) (5)

The governing equations are now derived using variational principle, assuming no body force, as
follows:

o to
0=— J O','/‘éﬁil‘dle + J J tiou;dS dt = oU + O F; (6)
oJv 0Js
to 1o
0=— J Did AV dr + J J 4eOpdS dt = OE + F )
0 Jr 0JsS
0 r . to
0= J J 10,00, + SToae]dde + J J 4,048 di = 30 + 50, + 5F; ®)
V= S

0 0

In Egs. (6)—(8), k; denotes the thermal conductivity, S denotes the derivative of S with respect to time,
t; represents the components of the traction vector, ¢, and g, represent the charge density and heat flux,
respectively. It must be noted that Eqs. (6)—(8) address temperature, piezoelectric and mechanical fields

A

4
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Piezoelectric actuator
Composite plate

PZT

Fig. 1. Geometry of composite laminate with piezoelectric layers.
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simultaneously and represent the governing equations of the coupled thermo-piezoelectric-mechanical
theory.

2.1. Higher order displacement field

The present theory uses a displacement approach. The displacement field is assumed according to the
higher order displacement theory, which incorporates the transverse shear effects. The form is dictated
by the satisfaction of the conditions that the transverse shear stresses vanish on the plate surfaces and
be nonzero values elsewhere. The higher order displacement field can be written as

owo(x,p,t

ul(-xay’ z, t):uo(xay’ t)_Z% +g(z)lpx(xay7 t) (9)
owo(x, y, t

uy(x, y, z, t) = vo(x, y, t) — z% + 8@ W (x, . 1) (10)

us(x, y, 2, 1) = wo(x, y, 1) (11)

with
4
g2 =z— 757 (12)

32

In Eqgs. (9)—(11), ug, vo and wy are the displacements of a point in the middle plane of the laminate, /.
and y, are the rotations of a transverse normal at z =0 about the y and -x axes, respectively and H
indicates the total thickness of the plate including the piezoelectric layers (Fig. 1).

2.2. Layerwise linear piezoelectric field

The expression for the potential function (¢) is assumed to be layerwise and linear along z-axis in
each layer

¢j(x, Y,z ) = ¢Oj(x, 3] ~|—z¢1j(x, »t) (G=12) (13)

where j indicates the layer of piezoelectric laminae. Because only top and bottom surface bonded
piezoelectric actuators are studied in this work, j = 1 indicates the piezoelectric layer at bottom and j =
2 indicates the piezoelectric layer on top.

2.3. Higher order temperature field

In the higher order temperature theory, temperature field (6) is assumed as a cubic function of the
thickness of the plate, z.

0(x,y,z, ) = 0p(x, y, t) + 201 (x, y, t) + 2292()(, )+ 2303()6, 1) (14)

In general, the plate may be subjected to thermal loads at both top and bottom surfaces, so that the two
thermal boundary conditions on both surfaces expressed as

—Kk30.=¢q, z=H/2 (15)
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—xk3l.=q, z=-H/2 (16)
should be satisfied. Where ¢, and ¢, indicate the heat flux applied on top and bottom surfaces,
respectively. Whereas, k33 denotes the thermal conductivity through the thickness. The two higher order

terms in Eq. (14) can be identified in terms of the lower order terms, using the boundary conditions
defined in Egs. (15) and (16), as follows:

0(x, y, z, t)y = f(z) + Oo(x, v, 1) + g(2)01(x, y, 1) (17)
where the function g(z) has been defined in Eq. (12) and the function f{z) takes the following form:

2a—a 22 i+

O =35 T3H?

It must be noted that the higher order temperature field defines a nonuniform temperature distribution
in the plate (both in- and out-of-plane). The cubic functions f(z) and g(z) in Eq. (17), which are
developed for a two-dimensional element and are calculated from the thermal boundary conditions on
the surfaces, denote temperature variations through the plate thickness. The functions 0y(x, y) and
01(x, y) define the in-plane temperature variations and are calculated using finite element method and
thermal boundary conditions along the plate sides. It is important to note that although a linear
temperature filed can address the in-plane temperature distribution, it cannot satisfy the surface thermal
boundary conditions defined in Eqgs. (15) and (16). Therefore, temperature variations through the
thickness, which produce the most important bending deformation, cannot be modeled accurately by the
linear temperature field.

3. Finite element model and solution

Using Egs. (9)—(11), the strain vector can be written as follows:

8u1 82 d

— — 0 —z— — 0

ax ax “ox? g(z)ax

dun 0 92 0
0] | o ST T [
2 du,  du "0

e=|ea | = a—2+—3 = 0 0 0 0 dg(z) wo | =L, (18)

c z ay dz lp
5 0 ou dg(z) 1px
&6 oup | ouy y

0z + 0x 0 0 0 dz 0

duy dup 9 ] 82 d J

-ty Ire A ) - _—

L 9y 9x | |3y ax Sy g(z)ay g(z)ax i

In Eq. (18), the matrix L, is an operator matrix and w,=[uo vo wo ¥, ¥,]".
The expressions for the electric field (E/) and the temperature field (0) can be derived as follows:
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J
e ]
v ax  Ox j
i 0’ 0 j .
E/'=—{ }=—| 0 el ) :L2u¢ G=1,2) (19)
ay — I ¢.I
, y oy I
ag’ 0 1
0z
0 =f(z)+ 00+ g(2)0, =f(z) + Lsuy (20)

where L, and L3 are piezoelectric and thermal operator matrices, respectively and “d{ = [</)Oj qblj I
indicates the potential variable vector for the jth layer of piezoelectric laminae. Thermal variable vector
is expressed as ug=[0y 0,]".

Considering a rectangular plate finite element with four nodes, bilinear Lagrangian interpolation
functions (N;, i =1, 2, 3, 4) are used for u, vy, ¥, and ¥, and Hermite interpolation functions (H,;, Hy;,
and Hs;, i =1, 2, 3, 4) are used for w,. Hence, the displacement vector u, can be expressed as follows:

u, = Nju (21)

where

T
N1=[N(1” N®  NO N(14)] and llf,=[u"(” I uc’“”]

with
N0 0 0 0 0 0
. 0O N, O 0 0 0 0
NOY=10 0 H,;, Hy Hy 0 0 (i=1,2,3,4)
0 0 0 0 0 N O
0 0 0 0 0 0 N
and

o0

u, :[ub Yo W0 Wox Wou 1/ lﬁi] (i=1,2,3,4)

where N, indicates the interpolation matrix, u denotes a vector containing the displacement variables
on the four nodes. By using Eqs. (18) and (21), the strain vector can be expressed as follows:

¢ =B,u] (22)

where

u

— 1 2 3 4
Bu—[B(u) B2 B B()]

with
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oN,;
0x

B(i) — 0

u

0

aN;
| dy
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0

aN;
ay

0

0

dN;
0x

—Z

32H,; 32 Hy; 32 Hs; oN;
2 - 2 - B g(Z) 0
ax ax ax 0x
92 Hy; _282H2,~ _282H3,~ 0 (z)aNf
9y? dy? 9y? & dy
d
dz
dz
3%Hy; d2Hy; 32 Hy; N, N,
—2z —2z —2z g(z) g(2)
dxdy axady axay ay ax

Again, using bilinear Lagrangian interpolation functions for ¢, and ¢, the vector u, is expressed as

Uy = Nzué

where

_ (1) (2) (3) (4) 2 _ 9
Nz—[N2 N N; Nz] and u;,—[u¢ u, U, Uy

with

@ _|Ni 0O
N2_[ "

0

and

(i)
ug =

(23)

A B @)

I

] (i=1,2,3,4)

(o) ¢1]" (=1.2.3.4)

where N, is an interpolation matrix, u¢ denotes the potential variables on four nodes for each element.
From Egs. (19) and (23), the electric field (E) is expressed as

E = B¢ufﬁ

where

(24)

_ | p 2) (3) 4)
B,=[B) BY B B} ]

with
aN;
0x
B = | 9N
ay
0

IN;
: 0x
IN;
z 3y
N;

Once again, Lagrangian

defined as

Uy = N3ll§

(i=1,2,3,4)

interpolation functions are used to interpolate the thermal variables. wuy is

(25)
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where

N3=[N(3” N® N N(;”] and u§=[u§” @ em]T

FE T
py W
with

Ng”:[évf ?\,} (i=1,2,34)

and
w=[0 0] (=1,234)

where N3 indicates an interpolation matrix, uj denotes vectors containing the nodal values on the four
nodes. Thus, the temperature field vector takes the following form:

0 = fiz) + Bouy -
where

Bez[BS) B? BY 13594)]
with

BY =[N soN] (=1.2.3.4)

Rewrite Eqs. (2)—(4) in vector form, they are

o0 = Q¢ —PE — k0 27
D =P'¢ + BE +d0 (28)
S=k"¢+d"E + az0 (29)

where o and D are the stress vector and the electric displacement vector, respectively and ¢ and E are
the strain vector and the electric field vector, respectively. Matrices Q, B, P, k and d denote the matrix
forms of elastic constant, dielectric permittivity, piezoelectric constant, thermal-mechanical coupling
constant and thermal-piezoelectric coupling constant, respectively. The use of Egs. (27)—(29), (22), (24)
and (26) in Egs. (6)—(8) and integration with respect to volume V yields the following:

1o

fo
5U=_J J 58Tadth=—J J 57(Qe — PE — kO)dV di
0 Jr 0o Jrv

to 1o
= —J J 5uZTBZ(QBuu‘; —PByuj, — kBguz)dth + J
14

J su® BIf(z)dV dr
0 0 Jv

0]
_ 5uf,TJ (Kot + Kyt + Koo + Fyg) dr (30)
0
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1) fo
OE = J J OE™DAV dr = J J OET(PTe + BE 4 d0)dV dt
0 Jr 0 Jrv
fo . . fo of
=— L JV Su B (PB,u;, — BBsu, — dByug)d )V dr + L JV uf B f(z)dV dr
T fo
= ou¢ J (K@,llf, + K¢¢u; + K¢0u§ + F¢0) dt (31)
0
1o ) to r
00, = J J 10,00 ;dV dt = J J SOL] kL40dV dt = J J Suf B/ xBuidV de
0Jr 0Jr 0JV
T fo
= 5112 J K()ollg dt (32)
0

to A to . .
50, = J J STos0dV dt = J J To50(kTs + dTE + a70)dV dt
0 JV 0 JV

to
= TOJ J suy B (kTBOu; +d"Byu, + aTBoﬁg)dth
0Jr

1o
_ 5u§TJ (o + Cog, + Copi) dr (33)
0

The variation involving the force terms can be written as follows:

ty 0 ty
OF, = Su"tds dr = J J ou¢' BT tdsS dr = 5uffJ F, dt (34)
0Js 0JS 0
fo to r T fo
OF, = dpq.dS dt = J J Suf Bl q.dS dr = duf J F, dt (35)
0JsS 0JsS 0
to to r [P
OF; = 80q,dS dr = J J ouf Bl q,dS dt = ouf J Fy dt (36)
JOo JS 0JsS 0

Substituting Egs. (30)—(36) into Egs. (6)—(8), the following finite element governing equations of the
thermo-piezoelectric-mechanical coupled theory, based on the higher order temperature field, are
obtained.

0 0 0 uf, Ko Kud) Ky uf, F,—Fy
0 0 0 ll¢ + | K Kpp Ky ufﬁ =1Fy —Fy (37)
Cou Cop Cop | | Wy 0 0 Koo uj Fy —Fy

where the matrices Cy, and Cyg are damping matrices due to thermal-mechanical and thermal-electrical
coupling effect, respectively and Cyg is damping matrix due to thermal field. The matrices K,y and Ky,
are stiffness matrices due to piezoelectric-mechanical coupling effect, and K,9 and Ky are stiffness
matrices due to thermal-mechanical and thermal- electrical coupling, respectively. The matrices K., Kgy
and Ky are stiffness matrices due to mechanical, electrical and thermal fields, respectively. The vectors
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F,,F4s and Fy are force vectors due to mechanical, electrical and thermal fields, respectively and the
force vectors F,g, Fgo and Fgg result from the higher order temperature field.

4. Numerical results and discussion

At first, the results from the higher order temperature theory (HOT) are compared with those
obtained using a commercial finite element code ANSYS and a linear temperature field. To simplify the
model for correlation, only 0° uniform fiber-reinforced Graphite/Epoxy laminate without actuators is
considered, which implies that only thermal-mechanical coupling is presented in this case. The
dimensions of the plate are such that ¢ = 0.2032 m, » = 0.1016 m and # = 0.01016 m (Fig. 1). The
plate is subjected to a heat flux of ¢, = 3000 W/m? on top and it is insulated at the bottom. All four
sides are maintained at room temperature (20°C). In the two-dimensional analysis using the current
theory, the plate is discretized using ten elements along the plate length and four elements along the
plate width. In the full three-dimensional finite element analysis using ANSYS, 10 x 4 x 6 8-node brick
elements are used. The through-the-thickness temperature variation of the central point in the plate is
shown in Fig. 3. The square symbol is used to denote the results based on the higher order temperature
field, the circle data points are used to represent the results obtained using the linear temperature field
and the triangular data points indicate the solution obtained from ANSYS. From Fig. 3, it is seen that
the HOT solution is in very good agreement with that obtained using ANSYS. Since the bottom of the
plate is insulated, the slope of the curve at z = —//2 (bottom of the plate) is infinity (30/9z = 0) which
obviously satisfies the boundary condition (Eq. (16)) at the bottom surface. However, the linear

g Line Y4
< Line Yo
3 Line Y3
B A
6 o= 3 Liney 4

Line X4 Line Xy Line X3

Fig. 2. 2-D Finite element model of the thermo-piezoelectric-mechanical theory.
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temperature distribution deviates on top and bottom surfaces, which implies that it cannot satisfy the
thermal boundary conditions on the plate surfaces.

Further correlations of the temperature distributions along plate length and width (lines x;, x», x3 and
Y1, V2, V3, Va, Fig. 2), between HOT and ANSYS, are presented in Figs. 4 and 5. It must be noted that
curve fitting is used in presenting these distributions. Fig. 4 shows the temperature distributions in mid-
plane along x-axis for line x, and x3. As seen, the solutions from the higher order temperature theory
agree very well with ANSYS. The magnitude of temperature rise along the central line x5 is larger than
that along x,. This is because line x, is closer to the boundary that is maintained at room temperature.
The temperature rise in the plate is a result of the heat flow from the top surface to the side boundaries
where heat finally dissipates.

The temperature rise is maximum at the center of the plate and has the smallest values near the plate
side boundaries. The temperature distribution is also symmetric since the geometry of the plate, the
thermal boundary conditions and the external loading are all symmetric. The temperature distributions
in mid-plane along the plate width (y-axis, Fig. 2) are shown in Fig. 5. There is excellent agreement
between the results from HOT and ANSYS for both lines y; and y;. Since line y; is closer to the
boundary, which is maintained at room temperature, the magnitudes of temperature rise along this line
are smaller compared to those along line y;.

From the results presented in Figs. 3-5, it is clear that the higher order temperature field is very
effective in accurately predicting the temperature distributions throughout the plate. It is important to
note that HOT is a two-dimensional theory implemented using plate type finite element. However, the
results are comparable to those obtained using the three-dimensional ANSYS model. Therefore, the
present theory provides a framework which is both accurate and computationally efficient.

Next, comparisons are made between the plate deflections obtained using HOT and ANSYS. The
deflections along plate length due to the temperature field are presented in Fig. 6 and excellent
agreement is observed between HOT and ANSYS. The maximum absolute value of deflection occurs at
plate tip, as expected. A convex distribution is observed along line x;. This is due to the expansion of
the structure caused by thermal loading.

Fig. 7 presents a comparison of the deflection variation along plate width ( y-axis, Fig. 2). Again, the
solutions from HOT and those obtained using ANSYS agree very well. The deflections along all three
lines (y;, y» and y;, Fig. 2) are symmetric. The deflections also reach their peak values at the plate

o HOT
O Linear
A ANSYS

Plate thickness (mm)
?

I T T T I I
101 102 103 104 105 106 107
Temperature rise (K)

Fig. 3. Correlation; temperature variation through plate thickness.
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120

100+

®
T

Line x, (HOT)

Line x, (ANSYS)

H
T

A Linexg (HOT)

Temperature rise in mid-plane (K)
N D
? ?

¢ Line xg (ANSYS)

e T T T T T -
0O 30 60 90 120 150 180 210
Plate length (mm)

Fig. 4. Correlation; temperature variation along plate length.

center. Since line y; is closer to the fixed edge, it is more affected by the fixed boundary condition. The
curvature of deformation along line y, is thus smaller compared to those along line y, and y;. The
maximum positive deflection occurs at the center of line y,, because the temperature variation here is
larger and it is far from the fixed edge (compared to line y;). Since line y, is located farthest from the
fixed boundary, the curvature of deformation is the largest in this case due to the least effects from the
fixed boundary.

The effect of stacking sequence on the temperature field is shown in Fig. 8. It is observed that, under
the same thermal loading condition, the peak values from the three stacking sequences are different. The
peak value is the maximum when the stacking sequence is [0°/0°/0°/0°]s, it is minimum when the
stacking sequence is [90°/90°/90°/90°]s and the peak value for the stacking sequence [0°/90°/0°/90°]s is
somewhere in between. The reason for this is that composite material has different thermal conductivity
coefficients along fiber and across fiber (see Table 1). For the composite material discussed here
(Graphite/Epoxy), the thermal conductivity along fiber (x;; =4.48) is larger than the thermal

100

©
T

o
T

o Liney, (HOT)

D
?

o Liney, (ANSYS)

n
i

A Liney, (HOT)

Temperature rise in mid-plane (K)

¢ Liney; (ANSYS)
T T T T
0 20 40 60 80 100
Plate width (mm)

Fig. 5. Correlation; temperature variation along plate width.
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0.005
SRR e o Linex, (HOT)
€ o Linex, (ANSYS)
£ -0.005
5 A Line x, (HOT)
3 -0.01- o Line x, (ANSYS)
[
e 4 Line x5 (HOT)
-0.015-
v Line x, (ANSYS)
-0.02

T T T T T T 1
0O 30 60 90 120 150 180 210
Plate length (mm)

Fig. 6. Correlation; deflection along plate length.

o Liney, (HOT)
o Liney, (ANSYS)
A Liney, (HOT)

o Liney, (ANSYS)

S
o
=
1

Deflection

2 Liney, (HOT)

v Liney, (ANSYS)

-0.02 T T T T
0 20 40 60 80 100
Plate width (mm)

Fig. 7. Correlation; deflection along plate width.

120
o 100
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= 80+

©

(]
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= 60

2 “ o [0°/0°0°/0°]
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qE) s
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i T T T T T T
0O 30 60 90 120 150 180 210
Plate length (mm)

Fig. 8. Effect of stacking sequence on temperature variation.
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conductivity across fiber (k> = 3.21). In the case of the [90°/90°/90°/90°]s stacking sequence, the larger
thermal conductivity coefficient is along width coordinate (the short side, Fig. 2), therefore heat is
transmitted easily to the surroundings thereby reducing the temperature variation.

The effect of stacking sequence on plate deflection, along length and width directions, is shown in
Figs. 9 and 10, respectively. From Fig. 9, the maximum absolute value of tip deflection is obtained with
the [90°/90°/90°/90°]s laminate. This is because, in this case, the Young’s modulus along fiber (E; =
144.23 Gpa) is along width coordinate and the Young’s modulus across fiber (E, = 9.65 GPa) is along
length coordinate. This makes the plate soft in length direction resulting in much larger deflection
compared to the case of [0°/90°/0°/90°]s and [0°/0°/0°/0°]s stacking sequences (Fig. 9). The opposite
trend is observed in Fig. 10 since the [90°/90°/90°/90°]s is stiff along width direction. Since the Young’s
modulus along x-axis (Fig. 2) for [0°/90°/0°/90°]s is larger than that for [90°/90°/90°/90°]s and smaller
than that for [0°/0°/0°/0°]s, the deflection in this case falls between the other two cases (Figs. 9 and 10).

The difference between the two models, the newly developed thermo-piezoelectric-mechanical
(““coupled”) model and the standard (“uncoupled”) model, with one-way coupling between the three
fields, is investigated next.The same composite plate structure subjected to the same thermal load is
used. Piezoelectric actuators are surface bonded to top and bottom surfaces of the plate (Fig. 1). The
actuator dimensions are such that length = 0.08128 m, width = 0.0508 m and height = 0.00254 m. A

Table 1
Material properties of PZT and Graphite/Epoxy composite

PZT Graphite/Epoxy
Elastic Moduli (GPa):
Ej 63 144.23
E», 63 9.65
Es; 63 9.65
Shear Moduli (GPa):
Gos 24.6 3.45
Gis 24.6 4.14
G2 24.6 4.14
Poisson’s Ratio:
v 0.28 0.3
Coefficients of Thermal Expansion (um/m-°C):
o1 0.9 1.1
[v5%) 0.9 252
Density (kg/m?):
p 7600 1389.23
Piezoelectric Charge Constant (pm/V):
€3] = e3 150 -
Electric Permittivity (nf/m):
by = by 15.3 -
b33 15.0 -
Pyroelectric Constant (uC/m?>-°C)
d; 20 -
Thermal Conductivity (W/m-"C):
K11 2.1 448
K22 2.1 3.21
Heat Capacity (J/kg-°C):
CE 420 1409

Curie Temperature (°C)
T, 365 -
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Fig. 9. Effect of stacking sequence on deflection along plate length.

comparison of the plate deflection, obtained using the coupled and the uncoupled model, is presented in
Fig. 11. It can be seen that under thermal loads, the deflection from the coupled model is smaller
compared to that obtained using the uncoupled model. This is due to the interaction between thermal,
piezoelectric and displacement fields in the coupled model. The coupled model considers thermoelectric
effect, which implies that thermal energy can be stored in the form of electrical energy. Therefore,
thermally induced deflection is reduced. Fig. 12 shows that the plate deflection is reduced by 11.5% at
the plate tip (point A, Fig. 2).

It is also necessary to examine the effect of actuation, with the application of voltage, on the two
models. The same example structural configuration and thermal loading condition are used. Fig. 13
shows the actuation effect on the deflection of the plate along line x; (Fig. 2) with voltages applied on
the actuators. The case of 0 V implies that only thermal load is considered. The application of a voltage
implies that both thermal load and piezoelectric actuation are present. As observed before, the
magnitude of plate deflection, predicted by the uncoupled theory, is larger compared to that predicted

0.05-
0_
g 8 6 8
€
£-0.05]
5 o [0°/0°/0°/0°],
3 014 o [0°/90°0°/90°]
[¢]
[a]
A [90°/90°/90°/90°],
-0.15-]
-0-2 firy I =Y . X l—ll Il—\

T
0 20 40 60 80 100
Plate width (mm)

Fig. 10. Effect of stacking sequence on deflection along plate width.
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Fig. 11. Coupling effect on deflection along plate length.

by the coupled theory since more transformation of mechanical energy into thermal and electrical
energies due to coupling effects is considered in the coupled model. The difference between the two
theories is due to the fact that the uncoupled theory neglects both piezoelectric effect of actuation and
thermal coupling effect due to thermal loads. The difference is smaller in the absence of external voltage
(0 V), compared to the 200 V case. This is due to the presence of additional piezoelectric-mechanical
coupling effect in the latter case. Fig. 14 presents a comparison of the control authority which is defined
as the reduction in plate deflection with actuation. Compared to the coupled model, the reduction in
plate deflection at point B (Fig. 2) is overpredicted significantly (17.5 percent) by the uncoupled theory.

5. Conclusion

A higher order temperature (HOT) field theory is developed to accurately model the temperature
distribution in laminated structures. The theory is capable of satisfying all thermal surface boundary

Deflection (X10™3 mm)

Uncoupled Coupled

Fig. 12. Comparison of tip deflection, coupled and uncoupled theories.
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Fig. 13. Effect of actuation on deflection along plate length.

conditions. The temperature field is used in the development of a coupled thermo-piezoelectric-
mechanical theory for the accurate analysis of smart composite structures. A refined third order
displacement field is used to accurately capture the transverse shear effects. The mathematical model is
implemented using finite element technique. The developed procedure is used to investigate the response
of composite plates (one edge fixed and others free) with surface bonded piezoelectric actuators in the
presence of thermal loads. The results of the coupled theory are also compared with those obtained
using the conventional uncoupled theory. The following important observations are made from the
present study.

1. Excellent agreement is observed in the temperature distribution throughout the laminate between the
higher order temperature field and the general-purpose finite element code ANSYS. The HOT
satisfies all thermal boundary conditions.

2. The plate deflections predicted by HOT also agree very well with ANSYS.

3. Stacking sequence of the primary structure affects both temperature field and displacement field due
to orthotropic material properties and changes in thermal conductivity across and along fiber

e
|

Reduction of deflection (X103 mm)
o -—
I

?

Uncoupled Coupled

Fig. 14. Comparison of control authority due to actuation, coupled and uncoupled theories.
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directions.

4. The deflection predicted by the coupled theory is always smaller, compared to the coupled theory,
due to the transformation of mechanical energy into thermal and electrical energy in the coupled
model.

5. The uncoupled theory overpredicts control authority significantly.
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