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Abstract

A higher order temperature ®eld that satis®es the thermal surface boundary conditions, necessary for accurate
modeling of temperature distribution through the thickness of laminated structures, is developed. The theory is

implemented in the coupled thermo-piezoelectric-mechanical analysis of composite laminates with surface bonded
piezoelectric actuators. A higher order displacement theory is used to de®ne the mechanical displacement ®eld.
Therefore, transverse shear e�ects are modeled accurately and the developed procedure is applicable to both thin

and moderately thick laminates. The mathematical model is implemented using ®nite element technique. Numerical
results are presented for a composite laminated plate, with one edge ®xed, subjected to thermal loading.
Correlations with ANSYS, for both the temperature ®eld and the displacement ®eld, are presented to validate the

higher order temperature theory. Composite laminates of various stacking sequences are studied to investigate the
e�ects on temperature ®eld and displacement ®eld. The results obtained using the coupled theory are compared with
those obtained using the standard uncoupled theory. It is shown that thermal coupling a�ects plate de¯ection and
control authority due to actuation. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The development of smart composites o�ers great potential for use in advanced aerospace structures
because they are light in weight and possess adaptive control capabilities. Detailed overviews of the
current status of smart composite structures were reported by Crawley (1994) and Chopra (1996). For
the analysis of these structures, it is essential to accurately model both the strain ®eld and the electric
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®eld. However, most studies in smart structures considered only one-way interaction between the

mechanical ®eld and the piezoelectric ®eld. For example, in the analysis of a structure with actuators, it

is assumed that the piezoelectric ®eld can be calculated directly from applied voltage, which is then

introduced in the unknown displacement ®eld as an induced strain. Actually, not only does piezoelectric

actuation change the strain ®eld during active control of the structure, the new strain ®eld, in return,

a�ects the piezoelectric distributions. This is known as bi-way interaction in smart composites (Mitchell

and Reddy, 1995).

In addition, aerospace smart structures are often subjected to extensive thermal loads. Therefore, it is

necessary to accurately model the temperature distribution and the associated coupling e�ects. A better

understanding of bi-way coupling e�ects between temperature, piezoelectric and mechanical ®elds is

essential for the proper implementation of smart composites and active control techniques in the

presence of thermal loads. Unfortunately, limited research has been reported in this area. In Tauchert

(1992), one-way thermal-mechanical and one-way thermal-piezoelectric coupling e�ects based on the

Nomenclature

Bu, Bf, By operator matrices
bij dielectric permittivity, i, j � 1, 2, 3
cE heat capacity
cijkl elastic constants, i, j, k, l � 1, 2, 3
Di electric displacement components, i � 1, 2, 3
di thermal-piezoelectric coupling constants, i � 1, 2, 3
Ei electric ®eld components, i � 1, 2, 3
eijk piezoelectric constants, i, j, k � 1, 2, 3
F total free energy
H plate thickness including piezoelectric layers
h plate thickness without piezoelectric layers
kij thermal-mechanical coupling constants, i, j � 1, 2, 3
L1, L2, L3 operator matrices
N1, N2, N3 interpolation matrices
qe charge density
qs heat ¯ux density
S entropy
T0 initial temperature
ti traction, i � 1, 2, 3
ui displacement components, i � 1, 2, 3
u0, v0, w0 displacements of a point on the mid plane
V volume
x, y, z coordinates
aT material constant �aT � cE=T0)
eij strain tensor components, i, j � 1, 2, 3
y temperature rise from initial temperature (T0)
kij thermal conductivity, i, j � 1, 2, 3
aij stress tensor components, i, j � 1, 2, 3
f electric potential
()T transpose
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classical laminated theory were addressed. A layerwise theory was used to model smart composite plates
under thermal loads using a known thermal ®eld (Lee and Saravanos, 1996, Lee and Saravanos, 1997).
Again, the bi-way coupling e�ects between thermal-piezoelectric and thermal-mechanical responses were
ignored. Recently, a coupled thermo-piezoelectric-mechanical model was developed by Chattopadhyay et
al. to address the bi-way coupling issues associated with smart composites under thermal loads
(Chattopadhyay et al, 1998). However, a linear temperature ®eld, which is generally used in plate
problems to de®ne the temperature variation through the plate thickness, was used. The advantage of
the linear temperature ®eld is that it is easy to implement. However, the drawback is that it cannot
accurately satisfy thermal boundary conditions on the plate surfaces. Even for the numerical example
considered by Chattopadhyay et al. (1998), the heat ¯ux boundary conditions at the plate top surface
and the insulated boundary conditions at the plate bottom surface were not satis®ed. Therefore, the use
of a linear temperature ®eld does not provide an accurate representation of the temperature distribution
through the laminate thickness. Consequently, the plate out-of-plane bending moment, due to thermal
loads, is not modeled accurately. To address this issue, a new higher order temperature (HOT) ®eld is
developed in this paper for accurately modeling the temperature ®eld through the plate thickness. The
developed temperature ®eld satis®es the general thermal boundary conditions at both the top and
bottom surfaces of the laminates. It must be noted that although this theory is developed to study smart
structures, it can be widely used in the analysis of arbitrary plate structures. Also by Chattopadhyay et
al. (1998), the Rayleigh approach was used in the numerical implementation of the coupled theory. This
limits the application of the theory to practical structures and boundary conditions. In this paper, a
®nite element procedure is developed to implement the coupled thermo-piezoelectric-mechanical theory.
Therefore, the procedure is capable of addressing di�erent laminate geometry and boundary conditions.

2. Mathematical formulation

The governing equations are derived by applying the principle of free energy and the variational
principle. For the plate shown in Fig. 1, the total free energy of the structure can be written as

F
ÿ
eij, Ei, y

� � 1

2
cijkleijekl ÿ eijkEiejk ÿ 1

2
bijEiEj ÿ kijyeij ÿ diEiyÿ 1

2
aTy

2 �1�

where eij are the components of the strain tensor, Ei are the components of the electric ®eld vector, and
y is the temperature rise from the initial temperature T0. The quantities cijkl and eijk represent the elastic
and the piezoelectric constants, respectively and bij is the dielectric permittivity. The quantities kij and di
refer to the thermal-mechanical, and the thermal-piezoelectric coupling constants, respectively and aT is
de®ned as cE=T0, where cE is heat capacity. Consequently, the constitutive relations are

sij � @F

@eij
� cijklekl ÿ eijkEk ÿ kijy �2�

Di � ÿ @F
@Ei
� eijkejk � bijEj � diy �3�

S � ÿ@F
@y
� kijeij � diEi � aTy �4�

where sij and Di are the components of the stress tensor and the electric displacement vector,
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respectively and S is the entropy. Based on linear piezoelectricity, Ei is derivable from a scalar potential
function f as follows:

Ei � ÿf,i �i � 1, 2, 3� �5�

The governing equations are now derived using variational principle, assuming no body force, as
follows:

0 � ÿ
�t0
0

�
V

sijdeijdV dt�
�t0
0

�
S

tiduidS dt � dU� dF1 �6�

0 � ÿ
�t0
0

�
V

Didf,idV dt�
�t0
0

�
S

qedfdS dt � dE� dF2 �7�

0 �
�t0
0

�
V

h
kijy,idy,j � _ST0dy

i
dV dt�

�t0
0

�
S

qsdydS dt � dYk � dYc � dF3 �8�

In Eqs. (6)±(8), kij denotes the thermal conductivity, _S denotes the derivative of S with respect to time,
ti represents the components of the traction vector, qe and qs represent the charge density and heat ¯ux,
respectively. It must be noted that Eqs. (6)±(8) address temperature, piezoelectric and mechanical ®elds

Fig. 1. Geometry of composite laminate with piezoelectric layers.
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simultaneously and represent the governing equations of the coupled thermo-piezoelectric-mechanical
theory.

2.1. Higher order displacement ®eld

The present theory uses a displacement approach. The displacement ®eld is assumed according to the
higher order displacement theory, which incorporates the transverse shear e�ects. The form is dictated
by the satisfaction of the conditions that the transverse shear stresses vanish on the plate surfaces and
be nonzero values elsewhere. The higher order displacement ®eld can be written as

u1�x, y, z, t� � u0�x, y, t� ÿ z
@w0�x,y,t�

@x
� g�z�cx�x, y, t� �9�

u2�x, y, z, t� � v0�x, y, t� ÿ z
@w0�x, y, t�

@y
� g�z�cy�x, y, t� �10�

u3�x, y, z, t� � w0�x, y, t� �11�
with

g�z� � zÿ 4

3H 2
z3 �12�

In Eqs. (9)±(11), u0, v0 and w0 are the displacements of a point in the middle plane of the laminate, cx

and cy are the rotations of a transverse normal at z � 0 about the y and -x axes, respectively and H
indicates the total thickness of the plate including the piezoelectric layers (Fig. 1).

2.2. Layerwise linear piezoelectric ®eld

The expression for the potential function �f� is assumed to be layerwise and linear along z-axis in
each layer

f j�x, y, z, t� � f j
0 �x, y, t� � zf j

1 �x, y, t� �j � 1, 2� �13�
where j indicates the layer of piezoelectric laminae. Because only top and bottom surface bonded
piezoelectric actuators are studied in this work, j � 1 indicates the piezoelectric layer at bottom and j �
2 indicates the piezoelectric layer on top.

2.3. Higher order temperature ®eld

In the higher order temperature theory, temperature ®eld �y� is assumed as a cubic function of the
thickness of the plate, z.

y�x, y, z, t� � y0�x, y, t� � zy1�x, y, t� � z2y2�x, y, t� � z3y3�x, y, t� �14�
In general, the plate may be subjected to thermal loads at both top and bottom surfaces, so that the two
thermal boundary conditions on both surfaces expressed as

ÿk33y,z � qt z � H=2 �15�
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ÿk33y,z � qb z � ÿH=2 �16�

should be satis®ed. Where qt and qb indicate the heat ¯ux applied on top and bottom surfaces,
respectively. Whereas, k33 denotes the thermal conductivity through the thickness. The two higher order
terms in Eq. (14) can be identi®ed in terms of the lower order terms, using the boundary conditions
de®ned in Eqs. (15) and (16), as follows:

y�x, y, z, t� � f�z� � y0�x, y, t� � g�z�y1�x, y, t� �17�

where the function g(z ) has been de®ned in Eq. (12) and the function f(z ) takes the following form:

f�z� � ÿ z2

2H

qt ÿ qb
k33

ÿ 2z3

3H 2

qt � qb
k33

It must be noted that the higher order temperature ®eld de®nes a nonuniform temperature distribution
in the plate (both in- and out-of-plane). The cubic functions f(z ) and g(z ) in Eq. (17), which are
developed for a two-dimensional element and are calculated from the thermal boundary conditions on
the surfaces, denote temperature variations through the plate thickness. The functions y0�x, y� and
y1�x, y� de®ne the in-plane temperature variations and are calculated using ®nite element method and
thermal boundary conditions along the plate sides. It is important to note that although a linear
temperature ®led can address the in-plane temperature distribution, it cannot satisfy the surface thermal
boundary conditions de®ned in Eqs. (15) and (16). Therefore, temperature variations through the
thickness, which produce the most important bending deformation, cannot be modeled accurately by the
linear temperature ®eld.

3. Finite element model and solution

Using Eqs. (9)±(11), the strain vector can be written as follows:

eee �

266664
e1
e2
e4
e5
e6

377775 �

2666666666666666664

@u1
@x

@u2
@y

@u2
@z
� @u3
@y

@u1
@z
� @u3
@x

@u1
@y
� @u2
@x

3777777777777777775

�

2666666666666666664

@

@x
0 ÿz @

2

@x 2
g�z� @

@x
0

0
@

@y
ÿz @

2

@ 2y
0 g�z� @

@y

0 0 0 0
dg�z�
dz

0 0 0
dg�z�
dz

0

@

@y

@

@x
ÿ2z @ 2

@x@y
g�z� @

@y
g�z� @

@x

3777777777777777775

2666664
u0
v0
w0

cx

cy

3777775 � L1uu �18�

In Eq. (18), the matrix L1 is an operator matrix and uu�� u0 v0 w0 cx cy �T:
The expressions for the electric ®eld �E j� and the temperature ®eld �y� can be derived as follows:
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E j � ÿ

8>>>>>>>><>>>>>>>>:

@f j

@x

@f j

@y

@f j

@z

9>>>>>>>>=>>>>>>>>;
� ÿ

2666664
@

@x
z
@

@x

@

@y
z
@

@y

0 1

3777775
8<:f j

0

f j
1

9=; � L2u
j
f �j � 1, 2� �19�

y � f�z� � y0 � g�z�y1 � f�z� � L3uy �20�

where L2 and L3 are piezoelectric and thermal operator matrices, respectively and u
j
f � �f j

0 f j
1
�T

indicates the potential variable vector for the jth layer of piezoelectric laminae. Thermal variable vector
is expressed as uy�� y0 y1 �T:
Considering a rectangular plate ®nite element with four nodes, bilinear Lagrangian interpolation

functions �Ni, i � 1, 2, 3, 4� are used for u0, v0, cx and cy and Hermite interpolation functions �H1i, H2i,
and H3i, i � 1, 2, 3, 4� are used for w0. Hence, the displacement vector uu can be expressed as follows:

uu � N1u
e
u �21�

where

N1 �
h

N
�1�
1 N

�2�
1 N

�3�
1 N

�4�
1

i
and ue

u �
h

ue�1 �
u ue�2 �

u ue�3 �
u ue�4�

u

iT

with

N
�i�
1 �

266664
Ni 0 0 0 0 0 0
0 Ni 0 0 0 0 0
0 0 H1i H2i H3i 0 0
0 0 0 0 0 Ni 0
0 0 0 0 0 0 Ni

377775 �i � 1, 2, 3, 4�

and

ue�i �
u �

h
ui0 vi0 wi

0 wi
0,x wi

0,y ci
x ci

y

iT �i � 1, 2, 3, 4�

where N1 indicates the interpolation matrix, ue
u denotes a vector containing the displacement variables

on the four nodes. By using Eqs. (18) and (21), the strain vector can be expressed as follows:

eee � Buu
e
u �22�

where

Bu �
h

B�1�u B�2�u B�3�u B�4�u

i
with
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B�i�u �

2666666666666666664

@Ni

@x
0 ÿz@

2H1i

@x 2
ÿz@

2H2i

@x 2
ÿz@

2H3i

@x 2
g�z�@Ni

@x
0

0
@Ni

@y
ÿz@

2H1i

@y2
ÿz@

2H2i

@y2
ÿz@

2H3i

@y2
0 g�z�@Ni

@y

0 0 0 0 0 0
dg�z�
dz

Ni

0 0 0 0 0
dg�z�
dz

Ni 0

@Ni

@y

@Ni

@x
ÿ2z@

2H1i

@x@y
ÿ2z@

2H1i

@x@y
ÿ2z@

2H1i

@x@y
g�z�@Ni

@y
g�z�@Ni

@x

3777777777777777775
Again, using bilinear Lagrangian interpolation functions for f0 and f1, the vector uf is expressed as

uf � N2u
e
f �23�

where

N2 �
h

N
�1�
2 N

�2�
2 N

�3�
2 N

�4�
2

i
and ue

f �
h

ue�1 �
f ue�2 �

f ue�3 �
f ue�4 �

f

iT

with

N
�i�
2 �

�
Ni 0
0 Ni

�
�i � 1, 2, 3, 4�

and

ue�i �
f �

�
fi
0 fi

1

�T �i � 1, 2, 3, 4�

where N2 is an interpolation matrix, ue
f denotes the potential variables on four nodes for each element.

From Eqs. (19) and (23), the electric ®eld (E) is expressed as

E � Bfue
f �24�

where

Bf �
h

B
�1�
f B

�2�
f B

�3�
f B

�4�
f

i
with

B
�i�
f �

2666664
@Ni

@x
z
@Ni

@x

@Ni

@y
z
@Ni

@y

0 Ni

3777775 �i � 1, 2, 3, 4�

Once again, Lagrangian interpolation functions are used to interpolate the thermal variables. uy is
de®ned as

uy � N3u
e
y �25�
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where

N3 �
h

N
�1�
3 N

�2�
3 N

�3�
3 N

�4�
3

i
and ue

y �
h

ue�1 �
y ue�2 �

y ue�3 �
y ue�4�

y

iT

with

N
�i�
3 �

�
Ni 0
0 Ni

�
�i � 1, 2, 3, 4�

and

ue�i �
y �

�
yi0 yi1

�T �i � 1, 2, 3, 4�

where N3 indicates an interpolation matrix, ue
y denotes vectors containing the nodal values on the four

nodes. Thus, the temperature ®eld vector takes the following form:

y � f�z� � Byu
e
y �26�

where

By �
h

B
�1�
y B

�2�
y B

�3�
y B

�4�
y

i
with

B
�i�
y �

�
Ni g�z�Ni

� �i � 1, 2, 3, 4�

Rewrite Eqs. (2)±(4) in vector form, they are

sss � Qeeeÿ PEÿ ky �27�

D � PTeee� bbbE� dy �28�

S � kTe� dTE� aTy �29�

where sss and D are the stress vector and the electric displacement vector, respectively and eee and E are
the strain vector and the electric ®eld vector, respectively. Matrices Q, B, P, k and d denote the matrix
forms of elastic constant, dielectric permittivity, piezoelectric constant, thermal-mechanical coupling
constant and thermal-piezoelectric coupling constant, respectively. The use of Eqs. (27)±(29), (22), (24)
and (26) in Eqs. (6)±(8) and integration with respect to volume V yields the following:

dU � ÿ
�t0
0

�
V

deeeTsssdV dt � ÿ
�t0
0

�
V

deeeT�Qeeeÿ PEÿ ky�dV dt

� ÿ
�t0
0

�
V

dueT

u BT
u

ÿ
QBuu

e
u ÿ PBfue

f ÿ kByu
e
y
�
dV dt�

�t0
0

�
V

dueT

u BT
u f�z�dV dt

� dueT

u

�t0
0

ÿ
Kuuue

u �Kufue
f �Kuyu

e
y � Fuy

�
dt �30�
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dE �
�t0
0

�
V

dETDdV dt �
�t0
0

�
V

dET
ÿ
PTeee� bbbE� dy

�
dV dt

� ÿ
�t0
0

�
V

dueT

f BT
f
ÿ
PBuu

e
u ÿ bbbBfue

f ÿ dByu
e
y
�
dV dt�

�t0
0

�
V

dueT

f BT
ff�z�dV dt

� dueT

f

�t0
0

ÿ
Kfuu

e
u �Kffue

f �Kfyue
y � Ffy

�
dt �31�

dYk �
�t0
0

�
V

kijy,idy,jdV dt �
�t0
0

�
V

dyLT
4 kkkL4ydV dt �

�t0
0

�
V

dueT

y BT
t kkkBtu

e
ydV dt

� dueT

y

�t0
0

Kyyue
y dt �32�

dYc �
�t0
0

�
V

_ST0dydV dt �
�t0
0

�
V

T0dy
ÿ
kT_e� dT ÇE� aT _y

�
dV dt

� T0

�t0
0

�
V

dueT

y BT
y

�
kTBy Çue

u � dTBy Çue
f � aTBy Çue

y

�
dV dt

� dueT

y

�t0
0

ÿ
Cyu Çue

u � Cyf Çue
f � Cyy Çue

y
�

dt �33�

The variation involving the force terms can be written as follows:

dF1 �
�t0
0

�
S

duTtdS dt �
�t0
0

�
S

dueT

u BT
mtdS dt � dueT

u

�t0
0

Fu dt �34�

dF2 �
�t0
0

�
S

dfqedS dt �
�t0
0

�
S

dueT

f BT
p qedS dt � dueT

f

�t0
0

Ff dt �35�

dF3 �
�t0
0

�
S

dyqtdS dt �
�t0
0

�
S

due
T

y BT
y qtdS dt � dueT

y

�t0
0

Fy dt �36�

Substituting Eqs. (30)±(36) into Eqs. (6)±(8), the following ®nite element governing equations of the
thermo-piezoelectric-mechanical coupled theory, based on the higher order temperature ®eld, are
obtained.24 0 0 0

0 0 0
Cyu Cyf Cyy

358<:
Çue
u

Çue
f

Çue
y

9=;�
24Kuu Kuf Kuy

Kfu Kff Kfy

0 0 Kyy

358<:
ue
u

ue
f

ue
y

9=; �
8<:Fu ÿ Fuy

Ff ÿ Ffy

Fy ÿ Fyy

9=; �37�

where the matrices Cyu and Cyf are damping matrices due to thermal-mechanical and thermal-electrical
coupling e�ect, respectively and Cyy is damping matrix due to thermal ®eld. The matrices Kuf and Kfu

are sti�ness matrices due to piezoelectric-mechanical coupling e�ect, and Kuy and Kfy are sti�ness
matrices due to thermal-mechanical and thermal- electrical coupling, respectively. The matrices Kuu, Kff

and Kyy are sti�ness matrices due to mechanical, electrical and thermal ®elds, respectively. The vectors
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Fu, Ff and Fy are force vectors due to mechanical, electrical and thermal ®elds, respectively and the
force vectors Fuy, Ffy and Fyy result from the higher order temperature ®eld.

4. Numerical results and discussion

At ®rst, the results from the higher order temperature theory (HOT) are compared with those
obtained using a commercial ®nite element code ANSYS and a linear temperature ®eld. To simplify the
model for correlation, only 08 uniform ®ber-reinforced Graphite/Epoxy laminate without actuators is
considered, which implies that only thermal-mechanical coupling is presented in this case. The
dimensions of the plate are such that a = 0.2032 m, b = 0.1016 m and h = 0.01016 m (Fig. 1). The
plate is subjected to a heat ¯ux of qt � 3000 W/m2 on top and it is insulated at the bottom. All four
sides are maintained at room temperature (208C). In the two-dimensional analysis using the current
theory, the plate is discretized using ten elements along the plate length and four elements along the
plate width. In the full three-dimensional ®nite element analysis using ANSYS, 10 � 4 � 6 8-node brick
elements are used. The through-the-thickness temperature variation of the central point in the plate is
shown in Fig. 3. The square symbol is used to denote the results based on the higher order temperature
®eld, the circle data points are used to represent the results obtained using the linear temperature ®eld
and the triangular data points indicate the solution obtained from ANSYS. From Fig. 3, it is seen that
the HOT solution is in very good agreement with that obtained using ANSYS. Since the bottom of the
plate is insulated, the slope of the curve at z � ÿh=2 (bottom of the plate) is in®nity �@y=@z � 0� which
obviously satis®es the boundary condition (Eq. (16)) at the bottom surface. However, the linear

Fig. 2. 2-D Finite element model of the thermo-piezoelectric-mechanical theory.
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temperature distribution deviates on top and bottom surfaces, which implies that it cannot satisfy the
thermal boundary conditions on the plate surfaces.

Further correlations of the temperature distributions along plate length and width (lines x1, x2, x3 and
y1, y2, y3, y4, Fig. 2), between HOT and ANSYS, are presented in Figs. 4 and 5. It must be noted that
curve ®tting is used in presenting these distributions. Fig. 4 shows the temperature distributions in mid-
plane along x-axis for line x2 and x3. As seen, the solutions from the higher order temperature theory
agree very well with ANSYS. The magnitude of temperature rise along the central line x3 is larger than
that along x2. This is because line x2 is closer to the boundary that is maintained at room temperature.
The temperature rise in the plate is a result of the heat ¯ow from the top surface to the side boundaries
where heat ®nally dissipates.

The temperature rise is maximum at the center of the plate and has the smallest values near the plate
side boundaries. The temperature distribution is also symmetric since the geometry of the plate, the
thermal boundary conditions and the external loading are all symmetric. The temperature distributions
in mid-plane along the plate width ( y-axis, Fig. 2) are shown in Fig. 5. There is excellent agreement
between the results from HOT and ANSYS for both lines y1 and y3. Since line y1 is closer to the
boundary, which is maintained at room temperature, the magnitudes of temperature rise along this line
are smaller compared to those along line y3.

From the results presented in Figs. 3±5, it is clear that the higher order temperature ®eld is very
e�ective in accurately predicting the temperature distributions throughout the plate. It is important to
note that HOT is a two-dimensional theory implemented using plate type ®nite element. However, the
results are comparable to those obtained using the three-dimensional ANSYS model. Therefore, the
present theory provides a framework which is both accurate and computationally e�cient.

Next, comparisons are made between the plate de¯ections obtained using HOT and ANSYS. The
de¯ections along plate length due to the temperature ®eld are presented in Fig. 6 and excellent
agreement is observed between HOT and ANSYS. The maximum absolute value of de¯ection occurs at
plate tip, as expected. A convex distribution is observed along line x3. This is due to the expansion of
the structure caused by thermal loading.

Fig. 7 presents a comparison of the de¯ection variation along plate width ( y-axis, Fig. 2). Again, the
solutions from HOT and those obtained using ANSYS agree very well. The de¯ections along all three
lines ( y1, y2 and y3, Fig. 2) are symmetric. The de¯ections also reach their peak values at the plate

Fig. 3. Correlation; temperature variation through plate thickness.
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center. Since line y1 is closer to the ®xed edge, it is more a�ected by the ®xed boundary condition. The
curvature of deformation along line y1 is thus smaller compared to those along line y2 and y3. The
maximum positive de¯ection occurs at the center of line y2, because the temperature variation here is
larger and it is far from the ®xed edge (compared to line y1). Since line y4 is located farthest from the
®xed boundary, the curvature of deformation is the largest in this case due to the least e�ects from the
®xed boundary.

The e�ect of stacking sequence on the temperature ®eld is shown in Fig. 8. It is observed that, under
the same thermal loading condition, the peak values from the three stacking sequences are di�erent. The
peak value is the maximum when the stacking sequence is [08/08/08/08]s, it is minimum when the
stacking sequence is [908/908/908/908]s and the peak value for the stacking sequence [08/908/08/908]s is
somewhere in between. The reason for this is that composite material has di�erent thermal conductivity
coe�cients along ®ber and across ®ber (see Table 1). For the composite material discussed here
(Graphite/Epoxy), the thermal conductivity along ®ber �k11 � 4:48� is larger than the thermal

Fig. 4. Correlation; temperature variation along plate length.

Fig. 5. Correlation; temperature variation along plate width.
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Fig. 6. Correlation; de¯ection along plate length.

Fig. 7. Correlation; de¯ection along plate width.

Fig. 8. E�ect of stacking sequence on temperature variation.
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conductivity across ®ber �k22 � 3:21). In the case of the [908/908/908/908]s stacking sequence, the larger
thermal conductivity coe�cient is along width coordinate (the short side, Fig. 2), therefore heat is
transmitted easily to the surroundings thereby reducing the temperature variation.

The e�ect of stacking sequence on plate de¯ection, along length and width directions, is shown in
Figs. 9 and 10, respectively. From Fig. 9, the maximum absolute value of tip de¯ection is obtained with
the [908/908/908/908]s laminate. This is because, in this case, the Young's modulus along ®ber �E1 �
144:23 Gpa) is along width coordinate and the Young's modulus across ®ber �E2 � 9:65 GPa) is along
length coordinate. This makes the plate soft in length direction resulting in much larger de¯ection
compared to the case of [08/908/08/908]s and [08/08/08/08]s stacking sequences (Fig. 9). The opposite
trend is observed in Fig. 10 since the [908/908/908/908]s is sti� along width direction. Since the Young's
modulus along x-axis (Fig. 2) for [08/908/08/908]s is larger than that for [908/908/908/908]s and smaller
than that for [08/08/08/08]s, the de¯ection in this case falls between the other two cases (Figs. 9 and 10).

The di�erence between the two models, the newly developed thermo-piezoelectric-mechanical
(``coupled'') model and the standard (``uncoupled'') model, with one-way coupling between the three
®elds, is investigated next.The same composite plate structure subjected to the same thermal load is
used. Piezoelectric actuators are surface bonded to top and bottom surfaces of the plate (Fig. 1). The
actuator dimensions are such that length = 0.08128 m, width = 0.0508 m and height = 0.00254 m. A

Table 1

Material properties of PZT and Graphite/Epoxy composite

PZT Graphite/Epoxy

Elastic Moduli (GPa):

E11 63 144.23

E22 63 9.65

E33 63 9.65

Shear Moduli (GPa):

G23 24.6 3.45

G13 24.6 4.14

G12 24.6 4.14

Poisson's Ratio:

n 0.28 0.3

Coe�cients of Thermal Expansion (mm/m-8C):
a11 0.9 1.1

a22 0.9 25.2

Density (kg/m3):

r 7600 1389.23

Piezoelectric Charge Constant (pm/V):

e31 � e32 150 ±

Electric Permittivity (nf/m):

b11 � b22 15.3 ±

b33 15.0 ±

Pyroelectric Constant (mC/m2-8C)
d3 20 ±

Thermal Conductivity (W/m-8C):
k11 2.1 4.48

k22 2.1 3.21

Heat Capacity (J/kg-8C):
cE 420 1409

Curie Temperature (8C)
Tc 365 ±
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comparison of the plate de¯ection, obtained using the coupled and the uncoupled model, is presented in
Fig. 11. It can be seen that under thermal loads, the de¯ection from the coupled model is smaller
compared to that obtained using the uncoupled model. This is due to the interaction between thermal,
piezoelectric and displacement ®elds in the coupled model. The coupled model considers thermoelectric
e�ect, which implies that thermal energy can be stored in the form of electrical energy. Therefore,
thermally induced de¯ection is reduced. Fig. 12 shows that the plate de¯ection is reduced by 11.5% at
the plate tip (point A, Fig. 2).

It is also necessary to examine the e�ect of actuation, with the application of voltage, on the two
models. The same example structural con®guration and thermal loading condition are used. Fig. 13
shows the actuation e�ect on the de¯ection of the plate along line x3 (Fig. 2) with voltages applied on
the actuators. The case of 0 V implies that only thermal load is considered. The application of a voltage
implies that both thermal load and piezoelectric actuation are present. As observed before, the
magnitude of plate de¯ection, predicted by the uncoupled theory, is larger compared to that predicted

Fig. 9. E�ect of stacking sequence on de¯ection along plate length.

Fig. 10. E�ect of stacking sequence on de¯ection along plate width.
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by the coupled theory since more transformation of mechanical energy into thermal and electrical
energies due to coupling e�ects is considered in the coupled model. The di�erence between the two
theories is due to the fact that the uncoupled theory neglects both piezoelectric e�ect of actuation and
thermal coupling e�ect due to thermal loads. The di�erence is smaller in the absence of external voltage
(0 V), compared to the 200 V case. This is due to the presence of additional piezoelectric-mechanical
coupling e�ect in the latter case. Fig. 14 presents a comparison of the control authority which is de®ned
as the reduction in plate de¯ection with actuation. Compared to the coupled model, the reduction in
plate de¯ection at point B (Fig. 2) is overpredicted signi®cantly (17.5 percent) by the uncoupled theory.

5. Conclusion

A higher order temperature (HOT) ®eld theory is developed to accurately model the temperature
distribution in laminated structures. The theory is capable of satisfying all thermal surface boundary

Fig. 11. Coupling e�ect on de¯ection along plate length.

Fig. 12. Comparison of tip de¯ection, coupled and uncoupled theories.
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conditions. The temperature ®eld is used in the development of a coupled thermo-piezoelectric-
mechanical theory for the accurate analysis of smart composite structures. A re®ned third order
displacement ®eld is used to accurately capture the transverse shear e�ects. The mathematical model is
implemented using ®nite element technique. The developed procedure is used to investigate the response
of composite plates (one edge ®xed and others free) with surface bonded piezoelectric actuators in the
presence of thermal loads. The results of the coupled theory are also compared with those obtained
using the conventional uncoupled theory. The following important observations are made from the
present study.

1. Excellent agreement is observed in the temperature distribution throughout the laminate between the
higher order temperature ®eld and the general-purpose ®nite element code ANSYS. The HOT
satis®es all thermal boundary conditions.

2. The plate de¯ections predicted by HOT also agree very well with ANSYS.
3. Stacking sequence of the primary structure a�ects both temperature ®eld and displacement ®eld due

to orthotropic material properties and changes in thermal conductivity across and along ®ber

Fig. 13. E�ect of actuation on de¯ection along plate length.

Fig. 14. Comparison of control authority due to actuation, coupled and uncoupled theories.
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directions.
4. The de¯ection predicted by the coupled theory is always smaller, compared to the coupled theory,

due to the transformation of mechanical energy into thermal and electrical energy in the coupled
model.

5. The uncoupled theory overpredicts control authority signi®cantly.
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